
Verified.Me Data Asset Client(DAC) & DC Integration
High Level Design

Version: 0.5
Date: 2021/09/24

Created by Russ Profant
Digital & Contact Center Technology (DCCT)

Revision history

2

Version Revision Date Summary of Changes Updated By
0.1 Sep 24, 2021 Initial Draft Russ Profant
0.2 Dec 22, 2021 Added diagrams Russ Profant
0.3 Mar 22, 2022 Added Batch Estimate Russ Profant
0.4 Apr 25, 2022 Added DC integration diagram Russ Profant
0.5 May 9, 2022 Updated initialization flow Russ Profant

Project Overview and Scope

This document describes high-level design (HLD) for the
implementation of a third-party (SecureKey) data service called
Verified.Me or V.Me

V.me will be used as an additional data provider to confirm the
identity of new customers for on-line banking for AML
(AntiMoneyLaundering) purposes.
Three systems are in scope for this project: Compass, eBanking,
ECIF

The scope in eBanking covers these current applications CCFA,
DFA. Others may be added later.

Additionally, eBanking will create a service that will act as an
internal proxy for other internal CIBC clients interested in
consuming the V.Me service.

3

Contributors:

Resource Role

Russ Profant eBanking App Consultant

Statement of
Business
Problem

4

❑ When new clients apply for a credit card or a deposit
account
they must undergo AML check as mandated by the federal government and if they
don’t pass their application cannot be fulfilled on-line but they must come to a
branch
V.me is much easier to use for a new client than DIV because it requires the client
only to login to their current FI (with browsers typically prefilling the login info)
and confirm the login through a one-time code verification.
The current AML options in eBanking

❑ There are other LOBs in the firm that may want to utilize this
service for their own needs with minimum time and effort as
an internal REST service.

AML Method ID Verification Method Data source AML
compliance

DIV Face-to-face single 2 (pic+document) full

TransUnion AML Non-face-to-face dual 2 credit sources full

TransUnion AML Non-face-to-face dual 1 credit source partial

Proposed
Business
Solution

5

❑ Offer an easier and faster alternative to new clients for AML
verification to the current DIV
This will be an additional method to compliment the AML methods listed previously
and will also act as an alternative to the DIV method. DIV method of client
identification is somewhat tedious, and clients sometimes abandon it in the middle of
the process.

❑ eBanking will offer simplified REST API to Verified.Me to
internal clients as a shared service

AML Method ID Verification Method Data source AML compliance

DIV Face-to-face single 2 (pic, document) full

TransUnion AML Non-face-to-face dual 2 credit sources full

TransUnion AML Non-face-to-face dual 1 credit source partial

VME Non-face-to-face dual 1 banking source partial

TU AML + VME Non-face-to-face dual 2 banking sources full

6

Logical & Technical Solution Overview

Provide an entry point for V.me login in DFA & CCFA and collect the data from V.MePI Data

Match the data to the user data and send it to Compass for AML useAML

Provide V.Me client proxy to internal users as a REST APIShared Service

Create REST API wrapper service for internal LOBs to access Verified.Me ‘Account Profile
Service’

VME Proxy for
Verified.Me

Integrate the wrapper service into DC flows based on business requirementsCart Integration
of VME

Project Assumptions and Dependencies

7

Assumptions

1 Verified.Me is available in the public cloud as an API service

2 The whole transaction between the client and V.Me service is carried out in a modified OpenID Connect authentication and authorization flow

3 Compass directs the AML processing and decides which methods to offer to clients to identify themselves via eBanking

4 ECIF will create a new verification method that will combine TU AML single source with VME single source into “dual source” AML ID
verification

5 EBM-TSS will be used initially as the security mechanism for the internal VME shared service

Dependencies

1 eBanking UI web and mobile apps
2 Content team for screens and messages
3 Verified.Me service by SecureKey
4 FI (Financial Institutions) file in EFT Hub
5 Key pair availability from TEM and AO teams

PI Data & Proxy Service - Impacted eBanking Components

8

Name High Level Changes Effort Size

EBM-VME Module 6 sprints DEV
3 sprints DEV QA (setup/support)
6 sprints App Consult

• Create a new module for this service called “ebm-vme”
• Transfer the service security from DIV module which uses EBM-TSS – API key

validation
API
• Create new API for the module - follow closely the ebm-div API model but

without DIV data models
Workflow
• Create API handlers that will perform all the work
• Create matching functionality for user data vs V.Me data

DC UI • Update AML catalog pages in all in-scope applications with V.Me service option

Resources • Update messages and content as necessary for this project

EBM-TSS • Register VME module as well as eBanking as a client of VME module 0.5 sprint

AML - Impacted eBanking Components

9

Name High Level Changes Effort Size

EBM-DC Compass API 2 sprints DEV
1 sprints DEV QA
2 sprints AC

• Create new Compass API service to send V.Me data to Compass

• Update APIs to include “V.Me” option
• Create the service in the module to offer this functionality to all in-scope applications
• Update all in-scope applications to perform the V.Me data collection if chosen by the

user

3 sprints DEV per app (CCFA, DFA)
1 sprint DEV QA per app

Batch 2 sprints DEV
1 sprint DEV QA

• Process FF file from EFT and load it to Gemfire

E2E Verified.Me Process Diagram

10

Data Access Client(DAC)
OpenID Connect client

Verified.Me
OIDC End Point Verified.Me

Landing Page

DLBP Data Access Provider(DAP)

Authorization Request

Verified.Me Application

License

Token Request

User Data

License Request License Creation

DLBP Adaptor

License Data Retrieval

License Data RetrievalDAP AdaptorDAC API Service

Hyper Ledger Fabric

Verified.Me Screen Flow (mobile version)

11

1 Select Financial Institution 2 Select App (mobile only) 3 Login to FI

Verified.Me Screen Flow cont. (mobile version)

12

4 User Data Retrieval 5 User Data Authorization 6 End

EBM-VME Design Outline - Approach

13

DIV code re-use
• Both services work based on OIDC authorization code grant
• EBM-VME will reuse EBM-DIV design including all the code but in a new module
• Changes will be made only where it is necessary

Main technical differences between DIV and VME
• The fundamental difference is the control of the flow:

1. In DIV there is an eBanking DIV landing page. As a result of this the code in the page can control the DIV flow between
client eBanking DIV and SecureKey DIV; this is UI-controlled flow.

2. In VME there is no page, therefore the flow must be controlled by eBanking VME module; this is BackEnd-controlled
flow.

• Same vendor but different end points (APIs) – configuration change
• Different vendor license and security details – configuration change
• Different data packages
• No need to create a job in Verified.Me as is the case in DIV
• The main functional difference is that there is no processing done by the vendor and so data is immediately available as soon

as the user ends their vendor flow. This means there is no polling required in DC to get the vendor output – different data
retrieval implementation

The VME E2E service will have 4 steps
1. Client system makes a request to EBM-VME to use the service. This must be done from the back end.
2. Client’s browser is redirected to the Verified.Me service. The client performs authorization and the actual login to another FI

which makes the data available to the vendor. Vendor redirects client browser back to eBanking.
3. EBM-VME requests the data from the vendor and redirects the client browser back to its application.
4. Client system requests the data from EBM-VME.

EBM-VME REST API – Create Request in eBanking VME

14

/v1/json/vme/workflow

POST API endpoint to create new workflow for VME process. This is a public API, to be called by calling applications.

Request Data Model
{"applicantInfo": {

"firstName": "Michael",
"lastName": "McGee",
"middleName": "George",
"dateOfBirth": "string",
"address": {

"streetAddress": "20 Dundas St. West",
"locality": "Toronto",
"region": "ON",
"postalCode": "L5M 6Z2",
"country": "CA”

},
"phoneNumber": "+14556789000",
"email": "michael@gmail.com"

},
"locale": "en-CA, fr-CA",
"callingAppParameter": {

“callingAppReturnUrl”:”https://dc/vme/callback”
“dataMatch”:

}

Response Data Model
{

”redirectUrl”:https://sk.vme/authorization_request_end_p
oint,

“worklowId”:”12345”
}

http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/createDivFlow
https://sk.vme/authorization_request_end_point

EBM-VME REST API – Get Request Status From eBanking VME

15

/v1/json/vme/workflows/{workflowId}/status
GET API endpoint to get workflow status for VME process. This is public API, that can be called by calling applications. This is a
client helper or convenience API as it will not be used during the flow.

Request Data Model
{”workflowId":”123-456-789
}

Response Data Model
{“workflow”: {

”workflowId":”123-456-789”,
“status”:”SUCCESS,FAILURE,CANCEL,IN_PROGRESS”,
“matchStatus”:”PASS,FAIL”,
”startDate:””,
“endDate”:””
“durationInSec”:””
}

}

http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/createDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow

EBM-VME REST API – Get Request Result From eBanking VME

16

/v1/json/vme/workflows/{workflowId}/result

GET API endpoint to get workflow results: claims and decision. This is public API, to be called by Calling Applications.

Response Data Model
{”vmeData": {

”givenName": "Michael",
"familyName": "McGee",
"middleName": "George",
”title": ”prefix-to-name”,
”honorific”:”suffix-to-name”,
"dateOfBirth": ””,
"address": {

"streetAddress": "20 Yonge St.",
"locality": "Toronto",
"region": "ON",
"postalCode": "L5M 6Z2",
"country": "CA”

},
”phoneNumber": "+14556789000”,
”email": "michael@gmail.com” ,
”customerRefNum”:””,
”verificationDate”:””
},

Request Data Model
{”workflowId":”123-456-789”
}

“account”:{
“type”:”deposit,credit card,loan”,
“number”:”1234567890”,
“institution”:”01”,
“active”:”yes”,

}},
”matchResult”:{

”status”:”PASS,FAIL”,
“firstName”:”PASS,FAIL”,
”lastName”:”PASS,FAIL”,
“dateOfBirth”:”PASS,FAIL”,
”active”:”PASS,FAIL”

},
“workflow”:{

”workflowId":”123-456-789”,
“status”:”SUCCESS,FAILURE,CANCEL,IN_PROGRESS”,
“matchStatus”:”PASS,FAIL”,
”startDate:””,
“endDate”:””
“durationInSec”:””

}}

http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/createDivFlow
http://scm-sites.crm-sfs.cibc.com/ebank-api-web#/DIVFlow/startDivFlow

EBM-VME REST API – Allow Vendor To Send Auth Code to eBanking

17

/v1/json/vme/vendorCallback

GET API endpoint to allow the vendor to return the auth code to eBanking. This is public API to be called by the V.Me vendor.

Request Data Model
On Success
{

”code":”authorizationCode”,
“state”:”workflowId”

}

On Failure
{

“error”:”access_denied”
“error_description”:””

}

Vendor uses standard OpenID defined error codes and error handling. In addition it has its own error code defined above for cases not covered by
OpenID error handling

EBM-VME REST API – Allow Vendor To Get The Public Signing Key

18

/v1/json/vme/.well-known/jwks.json

GET API endpoint to allow the vendor to get the public key to verify the signature of the request.

The API will return the public key for signature. The key will be in the keystore file so that the key can be easily rotated.

File format:

{ "keys": [{

"alg": "RS256",

"kty": "RSA",

"use": "sig",

"x5c": [“public_key"],

"kid": "NjVBRjY5MDlCMUIwNzU4RTA2QzZFMDQ4QzQ2MDAyQjVDNjk1RTM2Qg"

}]}

For field descriptions see https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-key-set-properties

https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-key-set-properties

Authorization request redirect link format
In order to authenticate the DAC, a signed request object is used. The authorization request is encoded as a compact serialized JWS
object signed with the DAC's signing key. The payload of the JWS contains a JSON object with the fields being the OpenID Connect
parameters below.
Request object structure

✓ redirect_uri - The URL that the authorization endpoint should redirect the response back to. This URL must be registered with Verified.Me
to prevent returning authorization responses to unknown clients.

✓ client_id (required) : A client_id string provided to the DAC during provisioning.
✓ scope (required) : A space delimited list of scope values that identify the data that the DAC wants. The scope must include the OpenID

scope as required by OpenID Connect as well as one or more of the Verified.Me defined scope values, such as Account Profile.
✓ response_type (required) : This must be set to the string value code.
✓ state (required) : Use workflowId
✓ ui_locales - A space delimited list of locale strings as described in RFC 5646. If provided, this will be used to select the language in the

Verified.Me OIDC service.
The full set of parameters in the link to be passed to the Verified.Me OpenID Connect authorization endpoint

✓ request (required) : the JWS request object described above.
✓ response_type (required) : This must be set to the string value “code”.
✓ client_id (required) : A client_id string provided to the DAC during provisioning.
✓ scope (required) : A space delimited list of scope values that identify the data that the DAC wants. The scope must include the OpenID

scope as required by OpenID Connect as well as one or more of the Verified.Me defined scope values, such as Account Profile.
Response

✓ code (required) : the authorization code to use in the token exchange for an access token.
✓ state (required) : the state provided in the authorization request.

EBM-VME Verified.Me Integration - Authorization Request

19

Access Token Request Format
The DAC is then able to exchange the authorization code for an access token by calling the Verified.Me OpenID Connect Endpoint. The
DAC will authenticate using the private_key_jwt method to enable the Verified.Me OpenID Connect Token Endpoint to validate that it is
the DAC making the call by verifying the signed token.
The token request is made by POSTing and the following parameters:

✓ grant_type (required) : The value MUST be set to "authorization_code".
✓ code (required) : The authorization code returned in the authorization grant response (above).
✓ client_assertion_type (required) : Must be set to the string urn:ietf:params:oauth:client-assertion-type:jwt-bearer
✓ client_assertion (required) : - A JWS encoded with compact serialization that is signed with the DAC's signing key. The payload of the

token is a JSON object with the following claims:
➢ iss (required) : The client_id of the DAC
➢ sub (required) : The client_id of the DAC
➢ aud (required) : The URL of the Verified.Me OpenID Connect Token Endpoint
➢ exp (required) : The expiry time of the token. This time should be set to a small value (e.g. 5 minutes) into the future as the token

will only be used to retrieve the access token.
➢ jti (required) : A unique identifier for the JWT.
➢ client_id (required) : The same client_id used in the authorization grant request.
➢ redirect_uri (required) :The same redirect_uri used in the authorization grant request.

Response
✓ access_token (required) : the access token to be used in subsequent API calls for this session.
✓ token_type (required) : MUST be set to "bearer".
✓ expires_in (required) : number of seconds until this token expires. This will at minimum be set to the job.expiry_time .
✓ id_token (required) : a JWS as described in https://openid.net/specs/openid-connect-core-1_0.html#IDToken. The sub field will be a

unique identifier for the user at the calling DAC. That is, different DACs will get a different value for the same user.

EBM-VME Verified.Me Integration - Access Token Request

20

https://openid.net/specs/openid-connect-core-1_0.html#IDToken

User Data Request
The DAC can now access the collected user data by sending a GET or POST request to the userinfo endpoint in accordance with OpenID Connect
Core Section 5.3. The access token must be provided in the Authorization header as a bearer token.
Response - Personal Data
The data CIBC is consuming is called “Account Profile”. It has basic personal client data listed below

EBM-VME Verified.Me Integration - User Data Request

Proprietary and Confidential © CIBC 2018 21

Field Name Details
given_name End-user's first name

family_name End-user's "last name," including prefixes

middle_name End-users "middle names." Includes all middle names, if more than one. Initials are acceptable.

title End-user's name prefix title (i.e., Mr., Mrs., Dr., Sgt)

honorific The suffix to the Client's name

birthdate End user's date of birth (YYYY-MM-DD)

address The end-user's primary postal address. This is an object with these fields: 1) streetAddress 2) locality 3)
region 4) postalCode 5) country

phone_number Person's primary number, mobile if available, in order of preference:
1) primary number if also marked mobile 2) most recent number marked mobile 3) home number if marked
mobile 4) primary number landline or unknown 5) home number landline or unknown 6) user selection

email Person's email address. In order of preference: 1) primary 2) user selection

customer_ref_num A unique reference number that links back to the user's original CIF

verification_date The date at which the FI server is attesting to the accuracy of this data

Response - Account Data
In addition, “Account Profile” offers basic account verification data

EBM-VME Verified.Me Integration - User Data Request cont.

Proprietary and Confidential © CIBC 2018 22

Top Field Name Sub-field Names Details
Account An open financial account belonging to the user. The older account is preferred. Order of preference

is:
• Deposit Account
• Credit Card account
• Loan Account

type the type of account (i.e. deposit, loan, credit card)

number the full transit plus account numbers of the selected account. There is a proposal to also pass the
transit number if the account field of this bundle. The first five numbers are the transit number,
followed by the account number (i.e. "9345334011111222233334444" Where the 93453 is the
Transit number and the 34011111222233334444 is the account number.)

institution The institution number associated to the FI (i.e. 01)

active The status of the account. "True" means the account is active, "False" means it is not, but detailed
account status (i.e. reason) is not provided

Russ Profant

Client Service
Request

Initialization
Using eBanking

VME Service

Russ Profant

User
Authorization

& FI Login
Through

Verified.Me

Russ Profant

Russ Profant

eBanking Data
Retrieval From

Verified.Me

Russ Profant

Client Data
Retrieval From
eBanking VME

service

Russ Profant

Digital Cart &
VME Service
Integration

Russ Profant

28

Screen Flows with V.Me

App Info Wait
Reco

Product
Offer COPS Wait

Accept
AML

Catalog
Wait
Fulfill

Confirmati
oneSignature

Login

Existing Customer?

Yes

Legend

UI pages

External Flow

App Info Wait
Reco

Upsell
Downsell

Wait
Accept

AML
Catalogue

Wait
Fulfillment Confirmation

DIV

VCIGet
Started

Login

Existing Customer?

Yes

Rates &
Fees

V.Me

Get
Started

DIV V.Me

Logical Decision

Password

CCFA

DFA New Screen/Service

EBM-VME Verified.Me as part of E2E AML Processing

29

Digital Card Compass CA ECIF API

Account Application submission
Account Opening Flow

Identity Request

Perform Verified.Me

Send data and match
results to Compass

Return TU AML Result:
• True
• False
Partial (institution ID)

Current functionality
New functionality

Analyze TU AML Data
Save single tradeline

Get TU AML Data

AML call

NF2F Failure

Send V. data to ECIF

Match User data to V.Me

Create list of FIs

Complete ECIF AML
data setup

Set AML catalog

Return AML status

Set AML catalog

Loop
While AML catalog has DIV
or V.Me

If partial TU match, then
Compass sends AML
Catalogue with:
1. DIV
2. V.Me (institution ID)
3. Branch

1. Compliance Authority is called
to perform AML validation

2. If there is AML compliance, the
case proceeds to post
compliance processing

3. If compliance fails due to ID
validation, the Identity
Validation service is called

4. Compass calls ECIF Identity API
5. Identity API calls TU
6. TU performs matching logic

and provides a response
7. Identity API inspects TU

response, updates ECIF and
returns result to Compass

8. Compass prepares AML catalog
based on ECIF response

9. eBanking presents AML catalog
10. eBanking performs V.Me if

selected
11. If successful eBanking matches

data and sends it to Compass
12. Compass sends the V.Me data

to ECIF and gets AML status
13. Compass updates AML catalog

and sends it to eBanking

Weekly Batch Job to Process FI File

30

Autosys EnterpriseFeedHub

Run Job

DC

Get FF file

Return Job Status

Parse FI File

Load Data Into Gemfire

• The FI file carries the list of all financial
institutions in Canada

• It’s posted on the FeedHub once a week
• eBanking needs to process the file by

extracting financial institution name,
number and parent number

• This data needs to be stored either in
Gemfire as this is the only storage
mechanism available in eBanking or
possibly as a text file for DC module
consumption

• The data will be used by DC module
when presenting the AML catalogue to
the client

• eBanking will compare the FI number
received from TU AML against the list of
FI institutions and exclude the matching
institution or parent institution from the
suggested list of V.Me FIs because they
are not eligible if they are the source of
TU AML data

